IKTIOFAUNA RAWA BANJIRAN SUNGAI KAMPAR KIRI
[Ichthyofauna in Floodplain of Kampar Kiri River]

Charles PH. Simanjuntak1, MF. Rahardjo2, Sutrisno Sukimin1
1Mahasiswa Ilmu Perairan, SPs-IPB
2Departemen Manajemen Sumberdaya Perairan FPIK IPB

ABSTRACT
The aim of study is to describe the richness of ichthyofauna of floodplain of Kampar Kiri River. Ichthyofauna study was conducted from June to December 2006. Method that used was purposive sampling where many gears were used. A total of 86 species belonging to 21 families and 44 genera was found. Cyprinidae was dominant, comprising 35 species or 40.7%, followed by Silluridae comprising 11 species or 12.8%. The high number of species richness was recorded for the floodplain of Kampar Kiri River.

Key words: ichthyofauna, floodplain, Kampar Kiri River.

PENDAHULUAN
Rawa banjir merupakan ekosistem yang sangat beragam, baik secara spasial maupun temporal. Sebagai bagian ekosistem sungai, daerah ini dicirikan oleh fluktuasi air antara musim kemarau dan penghujan yang bervariasi sepanjang tahun. Habitat pada ekosistem sungai banjir terdiri atas daerah lotik, yaitu alur sungai (river channels) baik yang besar atau yang kecil; daerah lentik yaitu daerah rawa, hutan, dan rumput yang tergenang; serta danau atau genangan yang permanen dan semi permanen. Pada musim kemarau volume air sangat kecil dan hanya ditemukan pada sungai utama, cekungan-cekungan tanah (lebung) dan sungai mati (oxbow lakes); sedangkan pada musim penghujan air meluap menggenangi daerah paparan, danau, genangan dan alur-alur sungai. Kondisi ini menimbulkan beragamnya habitat yang tersedia bagi organisme akuatik (Welcomme, 1985). Besarnya keragaman habitat yang tersedia memungkinkan banyak spesis ikan memanfaatkan daerah ini dengan berbagai cara untuk menunjang proses kehidupannya seperti pemijahan (Copp, 1989; Lim et al., 2002), pengasuhan anak-anak ikan (Ribeiro et al, 2004; Sommer et al., 2004), mencari makan, dan habitat untuk ikan-ikan dewasa selama siklus hidupnya (Borcherding et al., 2002). Rawa banjir yang terdapat di beberapa sungai di Indonesia seperti Sungai Kampar, Musi, Lempuing, Batanghari, Rokan, Kahayan, Barito, Mahakam, dan Kapuas merupakan ekosistem yang memegang peranan penting dalam produksi perikanan perairan tawar (Komatsu et al., 2000; Samita, 2001).

Beberapa tahun terakhir telah terjadi kecenderungan penurunan produksi perikanan perairan umum di Sungai Kampar yang disebabkan oleh laju eksploitasi ikan yang berlebihan dan kerusakan habitat, seperti yang terjadi di rawa banjiran Sungai Kapuas, Kalimantan Barat (Utomo dan Asyari, 1999) dan Sungai Tontle Sap, Kamboja (Lim et al., 1999). Namun di sisi lain, data kekayaan spesis ikan yang komprehensif di daerah sungai Kampar Kiri belum ada, sehingga perlu ada informasi kekayaan spesis ikan secepat mungkin untuk menjadi landasan studi-studi lebih lanjut, khususnya yang berkaitan dengan upaya pengelolaan sumberdaya ikan di Sungai Kampar Kiri dan rawa banjirannya.

BAHAN DAN METODE
Penangkapan ikan dilakukan dengan berbagai alat tangkap seperti jaring insang eksperimental, perangkap (lukah, pekarang dan sempitai), jala, pencing dan rawai. Jaring insang eksperimental berukuran mata jaring 1', 1,5', 2', 2,5' dan 3', panjang 20 m dan tinggi 2 m dipasang pada sore hari (18.00 WIB) dan kemudian diangkat pada pagi hari (06.00 WIB). Alat perangkap khususnya sempitai dipasang selama dua hari dua malam; sedangkan lukah dan pekarang dipasang di tepi danan dan tepi sungai yang masuk ke danau dan rawa selama sehari semalam. Pancing dan rawai berukuran mata pencing 1', 1,5' dan 2' dengan umpan cengkerik dan potongan ikan khususnya digunakan pada saat penangkapan ikan di rawa banjir dan di daerah lubuk.

Ikan yang tertangkap segera diawetkan dalam larutan formalin 10% dan dikelompokkan menurut daerah penangkapan. Ikan contoh tersebut dipindahkan dalam larutan alkohol 70% untuk selanjutnya diidentifikasi jenisnya di Laboratorium Ekobiologi Sumberdaya Perairan, Departemen MSP-FP Ik IP dan Laboratorium Iktiologi, Bagian Zoologi, Psat Penelitian Biologi, LIPI Cibinong. Identifikasi jenis ikan mengacu kepada beberapa buku dan jurnal seperti Weber dan de Beaufort (1913, 1916, 1922, dan 1936); Axelrod et al. (1985); Burgess (1989); Roberts (1989); Inger dan Chin (1990); Ng dan Lim (1990); Kottelat et al. (1993); Tan dan Ng (2000); Ng (2003); dan Gustiano et al. (2003).

HASIL

Selama penelitian berlangsung terkoleksi sebanyak 86 spesies ikan yang mewakili 21 famili dan 44 gener (Lampiran 2). Cyprinidae merupakan suku yang memiliki jumlah spesies terbanyak yakni 35 spesies (40,7%), kemudian diikuti Siluridae dengan 11 spesies (12,8%), Champidae dengan 9 spesies (10,5%) dan Bagridae dengan 7 spesies (8,1%). Selanjutnya famili Cobitidae dan Pangasiiidae terwakili oleh 3 spesies (3,5%); Claridae dan Priolestidae terwakili oleh 2 spesies (2,3%); sedangkan 13 famili lainnya diwakili oleh hanya satu spesies (Gambar 1). Komposisi spesies ikan yang tertangkap setiap bulan hampir sama di setiap daerah pengambilan sampel, namun terdapat perbedaan dalam jumlah atau kelimpahan masing-masing spesies.

Berdasarkan pengamatan di lapangan dan wawancara dengan nelayan setempat diperoleh informasi potensi pemanfaatan fauna ikan yang terkoleksi. Spesies ikan yang potensial untuk konsumsi sebanyak 68 jenis (76,1%); 10 jenis (11,6%) berpotensi sebagai ikan hias dan sisanya (8 spesies atau 9,3 %) berpotensi sebagai ikan konsumsi sekali; spesies yang paling banyak diminati dan dicari nelayan adalah H. nemurus, Hemibagrus wyckii, C. lopis, O. marmorata, Hampsala macrolepidota, Osteochilus kelabau, L. fasciatus, L. festivus, Punioptilus bulu, T. polyepis, T. thynnoides, H. temminkii, Kelompok ikan seelas (C. scleronema, H. heterorhynchus, K. apogon, O. hypophthalmus, Kryptoperus limpop, Kryptoperus cryptoperus, Kryptoperus schilbeides, dan O. eugeneiatus) serta dari genus Channa (Channa micropelttes, Channa striata, Channa melasoma, Channa lucius dan Channa gachua).

PEMBAHASAN

Rawa banjir Sungai Kampar Kiri termasuk perairan yang memiliki kekayaan fauna ikan yang tinggi. Besarnya keragaman fauna ikan yang
<table>
<thead>
<tr>
<th>Family</th>
<th>Width (bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characidae</td>
<td></td>
</tr>
<tr>
<td>Mastacembalidae</td>
<td></td>
</tr>
<tr>
<td>Channidae</td>
<td></td>
</tr>
<tr>
<td>Belontidae</td>
<td></td>
</tr>
<tr>
<td>Anabantoidei</td>
<td></td>
</tr>
<tr>
<td>Osphromenidae</td>
<td></td>
</tr>
<tr>
<td>Helostomatidae</td>
<td></td>
</tr>
<tr>
<td>Electridae</td>
<td></td>
</tr>
<tr>
<td>Polynemidae</td>
<td></td>
</tr>
<tr>
<td>Pristolepididae</td>
<td></td>
</tr>
<tr>
<td>Datnioidae</td>
<td></td>
</tr>
<tr>
<td>Chandidae</td>
<td></td>
</tr>
<tr>
<td>Belonidae</td>
<td></td>
</tr>
<tr>
<td>Claridae</td>
<td></td>
</tr>
<tr>
<td>Pangasiidae</td>
<td></td>
</tr>
<tr>
<td>Schilidae</td>
<td></td>
</tr>
<tr>
<td>Suridae</td>
<td></td>
</tr>
<tr>
<td>Bagridae</td>
<td></td>
</tr>
<tr>
<td>Cobitidae</td>
<td></td>
</tr>
<tr>
<td>Cyprinidae</td>
<td></td>
</tr>
<tr>
<td>Notopteridae</td>
<td></td>
</tr>
</tbody>
</table>

![Histogram of fish species distribution](image)

Gambar 1. Komposisi jenis ikan (famili dan jumlah spesies) yang terkoleksi dari rawa banjir Sungai Kampar Kiri selama penelitian.

Famili yang dominan ditemukan di daerah rawa banjir Kampar Kiri adalah famili Cyprinidae. Besarnya jumlah anggota famili Cyprinidae yang menghuni suatu perairan merupakan hal yang biasa karena famili ini merupakan famili ikan air tawar terbesar seluh dunia; kecuali Australia, Madagaskar, Selandia Baru dan Amerika Selatan (Kottelat et al., 1993). Famili Cyprinidae merupakan jenis ikan air tawar terbesar di Asia Tenggara (Zakaria-Ismail, 1994) termasuk di Pulau Sumatera (Wargasasmita, 2002). Beberapa hasil penelitian yang diperoleh di beberapa sungai dan rawa banjirannya kawasan pulau Sumatera menunjukkan hal serupa, seperti di perairan sektor Bukit Tigapuluh Siberida ditemukan bahwa famili Cyprinidae merupakan penghuni utama yang paling besar jumlah populasinya.
kenudian disusul jenis ikan catfish (Bagridae, Clariidae, Pangasiidae) (Siregar et al., 1993); di Sungai Rangau, Riau ditemukan 70 spesies ikan yang termasuk dalam 44 genera dan 21 famili dengan famili yang paling banyak tertangkap adalah Cyprinidae (17 spesies) disusul Siluridae (10 spesies) dan Bagridae (8 spesies) (Yustina, 2001); di Sungai Enim, Sumatera tertangkap 28 spesies (11 famili) fauna ikan yang didominasi famili Cyprinidae (14 spesies), Cobitidae (4 spesies) dan Balitoridae (2 spesies) (Hamidah, 2004); di daerah Tesso Nilo, Riau terkoleksi fauna ikan sebanyak 31 genera dari 16 famili. Famili yang dominan tertangkap adalah Cyprinidae (18 spesies), lalu diikuti Famili Bagridae (5 spesies), Belontiidae dan Siluridae (masing-masing 4 spesies) (Rachmatika, 2006).

Eksploitasi ikan yang berlebihan akibat tingginya permintaan pasar tanpa memperhatikan musin juga mendorong kian langkanyya beberapa jenis ikan target seperti yang tersebut di atas. Fenomena yang sama juga ditemukan di Sungai Rangau, Riau bahwa ikan Oxyeleotris marmorata dan Wallago leeri yang tergolong spesies bernilai ekonomis tinggi sudah mulai langka dihasilkan akibat eksploitasi yang berlebihan (Yusnita, 2001). Kondisi serupa juga ditemukan di di Danau Great and Sungai Tonde Sap, Kamboja bahwa telah terjadi penurunan keragaman spesies ikan air tawar akibat penangkapan yang berlebih khususnya pada saat musim penjahan serta perubahan rawa banjir akibat kegiatan pembalakan hutan (Lim et al., 1999).

Invasi spesies pendatang juga mengambil andil dalam penurunan keragaman spesies ikan air tawar (Wargasasmita, 2002; Tockner & Stanford, 2002). Pada saat penelitian ditemukan satu ekor ikan Colossoma macrophromum (Famili Characidae) di daerah danau Baru Simalinyang. Diduga ikan ini berasal dari keramba budidaya bawal air tawar yang terdapat di Sungai Kampar Kiri khususnya Desa Simalinyang. Risiko yang dikhawatirkan sekarinya semakin banyak spesies ini terlepas ke perairan akan mendesak populasi ikan asli karena termasuk ikan omnivora atau generalis. Beberapa hasil penelitian menunjukkan bahwa kehadiran spesies ikan asing (alien fish species) berdampak buruk terhadap fauna ikan lokal dan keseimbangan ekologis, seperti ikan Cichlasoma urophthalmus di sebelah Selatan Florida telah berhasil membentuk koloni yang stabil dan cepat ditunjang kebiasaan makan yang generalis (Bergmann & Motta, 2005); ekspansi ikan Percottus glenii di sebelah Barat Eurasia telah berdampak buruk terhadap keseimbangan ekologis di perairan tawar karena ikan ini merupakan predator bagi makro-invertebrata dan amphibia lokal (Reshefetnikov, 2004). Lewat kajian ontogenik jujana Cyprinus carpio (ikan pendedat) dengan ikan Maccullochella peeli peelli dan Macquaria ambiguia (ikan asli) di DAS Murray-Darling, Australia ditemukan bahwa terjadi kompetisi makanan pada fase larva. Perkembangan struktur organ pencernaan yang lebih cepat memungkinkan ikan Cyprinus carpio semakin berkembang dan mendesak keduas spesies ikan asli tersebut (Tonkin et al., 2006).

KESIMPULAN

1. Rawa banjir Sungai Kampar Kiri termasuk perairan yang memiliki kekayaan spesies ikan yang tinggi;
2. Ditemukan satu spesies ikan pada datang yaitu ikan *Colossoma macropomum*;
3. Upaya pengelolaan sumberdaya ikan perlu segera dilakukan untuk mempertahankan kelestarian fauna ikan.

UCAPAN TERIMAKASIH

DAFTAR PUSTAKA

Bergmann, GT. and Motta, PJ. 2005. Diet and morphology through ontogeny of the nonindigenous Mayan cichlid *Cichlasoma (Nandopsis) urophthalmus* (Gunther 1862) in southern Florida. *Environmental Biology of Fishes* 72: 205-211.

Tan, THT. and Ng, HH. 2000. The catfishes (Teleostei: Siluriformes) of central Sumatera. *Journal of Natural History* 34: 267-303

Lampiran 1. Peta lokasi penelitian di perairan rawa banjiran Sungai Kampar Kiri.

Keterangan
⊙: Lokasi pengambilan contoh
<table>
<thead>
<tr>
<th>No</th>
<th>Famili</th>
<th>Nama Ilmiah</th>
<th>Nama Lokal</th>
<th>Distribusi</th>
<th>Kelimpahan kualitatif</th>
<th>Potensi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Notopteridae</td>
<td>Chitala lopes</td>
<td>Belido (M, R, S)</td>
<td>✓ ✓ ✓</td>
<td></td>
<td>Sedikit</td>
</tr>
<tr>
<td>2.</td>
<td>Cyprinidae</td>
<td>Amblyrhynchichthys truncatus</td>
<td>Tukul-tukul (M)</td>
<td>✓ ✓ ✓</td>
<td>Sedikit</td>
<td>K</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td>Barborymus gonionotatus</td>
<td>Mengkarik (M, R); cingkariak (S)</td>
<td>✓ ✓ ✓</td>
<td>Banyak</td>
<td>K</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Barbonymus schwazenfeldii</td>
<td>Kapiek (M, R, S)</td>
<td>✓ ✓ ✓</td>
<td>Banyak</td>
<td>K</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Barbichthys laevis</td>
<td>Petulu (M, R, S)</td>
<td>✓ ✓ ✓</td>
<td>Sedang</td>
<td>K</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Cyclocheilichthys apogon</td>
<td>Sebahau (M, R, S)</td>
<td>✓ ✓ ✓</td>
<td>Banyak</td>
<td>K</td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td>Cyclocheilichthys sp</td>
<td>Sebahau (M, R, S)</td>
<td>✓ ✓ ✓</td>
<td>Sedang</td>
<td>K</td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td>Crossocheiulus oblongus</td>
<td>Selusur batang (S)</td>
<td>- - ✓</td>
<td>Sedikit</td>
<td>H</td>
</tr>
<tr>
<td>9.</td>
<td></td>
<td>Hampala macrolepidota</td>
<td>Barau (M, R, S)</td>
<td>✓ ✓ ✓</td>
<td>Sedang</td>
<td>K</td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td>Labiobarbus cf. festivus</td>
<td>MOTAN silencing/Seluang (M, R); Luang (S)</td>
<td>✓ ✓ ✓</td>
<td>Banyak</td>
<td>K</td>
</tr>
<tr>
<td>11.</td>
<td></td>
<td>Labiobarbus fasciatus</td>
<td>MOTAN silencing/Seluang (M, R); Luang (S)</td>
<td>✓ ✓ ✓</td>
<td>Banyak</td>
<td>K</td>
</tr>
<tr>
<td>12.</td>
<td></td>
<td>Labiobarbus fuscus</td>
<td>MOTAN silencing/Seluang (M, R); Luang (S)</td>
<td>✓ ✓ ✓</td>
<td>Banyak</td>
<td>K</td>
</tr>
<tr>
<td>13.</td>
<td></td>
<td>Labiobarbus ocellata</td>
<td>MOTAN silencing (M, R, S)</td>
<td>✓ ✓ ✓</td>
<td>Banyak</td>
<td>K</td>
</tr>
<tr>
<td>14.</td>
<td></td>
<td>Luciolema trinema</td>
<td>Panau canggak (M, S)</td>
<td>✓ ✓ ✓</td>
<td>Sedikit</td>
<td>K-H</td>
</tr>
<tr>
<td>15.</td>
<td></td>
<td>Osteochilus cf. microcephalus</td>
<td>Selusur Batang (M); Bujam (S)</td>
<td>✓ - ✓</td>
<td>Sedang</td>
<td>K</td>
</tr>
<tr>
<td>16.</td>
<td></td>
<td>Osteochilus cf. triporus</td>
<td>Bujam (M, R); Bujam putih (S)</td>
<td>✓ - ✓</td>
<td>Sedang</td>
<td>K</td>
</tr>
<tr>
<td>17.</td>
<td></td>
<td>Osteochilus hofretii</td>
<td>Ikan kuning (M, R); Paweh (S)</td>
<td>✓ ✓ ✓</td>
<td>Banyak</td>
<td>K</td>
</tr>
<tr>
<td>18.</td>
<td></td>
<td>Osteochilus kelabau</td>
<td>Kalabau (M, S)</td>
<td>✓ - ✓</td>
<td>Sedang</td>
<td>K</td>
</tr>
<tr>
<td>19.</td>
<td></td>
<td>Osteochilus microcephalus</td>
<td>Selusur Batang (M); Paweh (S)</td>
<td>✓ ✓ ✓</td>
<td>Banyak</td>
<td>K</td>
</tr>
<tr>
<td>20.</td>
<td></td>
<td>Osteochilus triporus</td>
<td>Bujam (M, R); Bujam putih (S)</td>
<td>✓ ✓ ✓</td>
<td>Banyak</td>
<td>K</td>
</tr>
<tr>
<td>22.</td>
<td></td>
<td>Parachela oxygastroideos</td>
<td>Pimping (M, R, S)</td>
<td>✓ ✓ ✓</td>
<td>Sedikit</td>
<td>K</td>
</tr>
<tr>
<td>23.</td>
<td></td>
<td>Puntiopipis bulu</td>
<td>Tabingalan (M,R) ikat timah (S)</td>
<td>✓ ✓ ✓</td>
<td>Sedikit</td>
<td>K</td>
</tr>
<tr>
<td>24.</td>
<td></td>
<td>Puntiopipis waandersi</td>
<td>Tabingalan (M)</td>
<td>✓ ✓ ✓</td>
<td>Sedikit</td>
<td>K</td>
</tr>
<tr>
<td>25.</td>
<td></td>
<td>Puntius cf. limneatus</td>
<td>Bujam (M, R)</td>
<td>✓ ✓ ✓</td>
<td>Sedikit</td>
<td>K</td>
</tr>
<tr>
<td>26.</td>
<td></td>
<td>Puntius lineatus</td>
<td>Mengkarik (M); cingkariak (S)</td>
<td>✓ - ✓</td>
<td>Sedikit</td>
<td>K</td>
</tr>
<tr>
<td>27.</td>
<td></td>
<td>Puntius sp</td>
<td>Kuning (S)</td>
<td>✓ - ✓</td>
<td>Sedikit</td>
<td>K</td>
</tr>
<tr>
<td>28.</td>
<td></td>
<td>Rasbora cf. sumatrana</td>
<td>Panau beras (S)</td>
<td>✓ - ✓</td>
<td>Sedang</td>
<td>K-H</td>
</tr>
<tr>
<td>29.</td>
<td></td>
<td>Rasbora caudimacula</td>
<td>Panau (M, R, S)</td>
<td>✓ ✓ ✓</td>
<td>Sedang</td>
<td>K-H</td>
</tr>
<tr>
<td>31.</td>
<td></td>
<td>Rasbora cf. trilineata</td>
<td>Panau beras (M); Panau bunga (S)</td>
<td>✓ ✓ ✓</td>
<td>Sedang</td>
<td>H</td>
</tr>
<tr>
<td>32.</td>
<td></td>
<td>Rasbora dusonensis</td>
<td>Panau (S)</td>
<td>✓ - ✓</td>
<td>Sedang</td>
<td>K-H</td>
</tr>
<tr>
<td>33.</td>
<td></td>
<td>Rasbora nyersi</td>
<td>Panau bolai (S)</td>
<td>✓ - ✓</td>
<td>Banyak</td>
<td>K-H</td>
</tr>
<tr>
<td>34.</td>
<td></td>
<td>Rasbora trilineata</td>
<td>Panau beras (S)</td>
<td>✓ - ✓</td>
<td>Sedang</td>
<td>H</td>
</tr>
<tr>
<td>35.</td>
<td></td>
<td>Thynnichthys polykapis</td>
<td>Motan godang kapala (M, R, S)</td>
<td>✓ ✓ ✓</td>
<td>Banyak</td>
<td>K</td>
</tr>
<tr>
<td>No.</td>
<td>Family</td>
<td>Species</td>
<td>Other Names</td>
<td>Habitat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----------------</td>
<td>---------------------------------------</td>
<td>--</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.</td>
<td>Cobitidae</td>
<td>Thymichthys thymoides</td>
<td>Motan godang kapala (M.R.S)</td>
<td>Bayak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37.</td>
<td></td>
<td>Scurrosius hynemophyes</td>
<td>ciling-ciling (M.R.S)</td>
<td>Sedikit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.</td>
<td></td>
<td>Pangio doriae</td>
<td>lili-lili (M)</td>
<td>Sedikit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39.</td>
<td></td>
<td>Pangio semicincta</td>
<td>lili-lili (M)</td>
<td>Sedikit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.</td>
<td>Bagridae</td>
<td>Bagroides melanopterus</td>
<td>Buang kunang (S)</td>
<td>Sedikit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.</td>
<td></td>
<td>Hemibagrus nemurus</td>
<td>Buang (M.R.S)</td>
<td>Banyak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.</td>
<td></td>
<td>Hemibagrus cf. olyroides</td>
<td>Inggir-inggir kepung (M. S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43.</td>
<td></td>
<td>Mystus microcanthus</td>
<td>Inggir-inggir kepung (M. R, S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44.</td>
<td></td>
<td>Mystus nigricus</td>
<td>Inggir-inggir (M. R. S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45.</td>
<td></td>
<td>Hemibagrus olyroides</td>
<td>Inggir-sugar kepung (M. S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46.</td>
<td></td>
<td>Hemibagrus wycki</td>
<td>Geso (M. K. S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.</td>
<td>Siluridae</td>
<td>Belodonthichthys dinema</td>
<td>Seungrek (M. P. S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.</td>
<td></td>
<td>Ceratoglanis scelonema</td>
<td>Selais Lubuk (M. R. S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49.</td>
<td></td>
<td>Hemistius heterorhynchus</td>
<td>Selais bangduk (M. R. S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.</td>
<td></td>
<td>Kryptoperus agogon</td>
<td>Selais tenger (M. R. S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51.</td>
<td></td>
<td>Kryptoperus cf. agogon</td>
<td>Selais panjang lampong (M.), selais lamong (S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.</td>
<td></td>
<td>Kryptoperus cyprinus</td>
<td>Selais juaro (M. R. S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53.</td>
<td></td>
<td>Kryptoperus limnoi</td>
<td>Selais juang (M. R. S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54.</td>
<td></td>
<td>Kryptoperus philibides</td>
<td>Selais jaro (M. R. S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55.</td>
<td></td>
<td>Onopok eugeneides</td>
<td>Selais gaba (M. R. S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56.</td>
<td></td>
<td>Onopok hypophthalmus</td>
<td>Selais dunan (M. R. S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57.</td>
<td></td>
<td>Walloago leiwi</td>
<td>Tapah (M. R. S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.</td>
<td>Schilidae</td>
<td>Pseudobrotus brachypterus</td>
<td>Taufayan (M.), Sianang (S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59.</td>
<td></td>
<td>Lagois lewana</td>
<td>Jaro (M. R. S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.</td>
<td>Pangasidae</td>
<td>Pangasius kyuvt</td>
<td>Patu kunang (M. S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61.</td>
<td></td>
<td>Pangasius micronemus</td>
<td>Taufayan (M.), Sianang (S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.</td>
<td>Claridae</td>
<td>Clarias meladerma</td>
<td>Limbat (M. S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63.</td>
<td></td>
<td>Clarias tejsamani</td>
<td>Limbat (M. S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64.</td>
<td>Belonidae</td>
<td>Xenodon cancellus</td>
<td>Cutung-cutung (M. R.), Julanga-julang (S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65.</td>
<td>Charidae</td>
<td>Parambassis macrolepis</td>
<td>Sapoungkah (M. F.), Siboungkah (S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66.</td>
<td>Dalropridae</td>
<td>Dalropris microlepis</td>
<td>Ikan elang (M. I)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67.</td>
<td>Pimelodidae</td>
<td>Pimelodis fasciata</td>
<td>Ikan bang (M.), Buhang (S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68.</td>
<td></td>
<td>Pimelodis gratil</td>
<td>Ikan bang (M.), Buhang (S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69.</td>
<td>Polymeridae</td>
<td>Polynemus dambas</td>
<td>Sesnumpat (M)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70.</td>
<td>Electridae</td>
<td>Oxyeleotris maromata</td>
<td>Ikan bodol (M.), botol (R. S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71.</td>
<td>Helostomatidae</td>
<td>Helostoma temmincki</td>
<td>Tulagk-Kepituk (M. R. S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72.</td>
<td></td>
<td>Ophronemidae</td>
<td>Kali (S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73.</td>
<td>Anabantoide</td>
<td>Anabas testudineus</td>
<td>Papuyuh (M. R. S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74.</td>
<td>Belontidae</td>
<td>Triphaster leeni</td>
<td>Sapt (M.), Sapat (R. S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75.</td>
<td></td>
<td>Belontia hesseli</td>
<td>Selucah (M. R. S)</td>
<td>Sedang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Jenis Ikan</td>
<td>Habitat</td>
<td>Spesies Ikan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>------------</td>
<td>---------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Chamidae</td>
<td>Jital (M, S)</td>
<td>Channa goschii</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Chamidae</td>
<td>Jital (M, S)</td>
<td>Channa melasoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Chamidae</td>
<td>Payuh (S)</td>
<td>Channa macrocheilos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Chamidae</td>
<td>Payuh (S)</td>
<td>Channa macrocheilos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Chamidae</td>
<td>Payuh (S)</td>
<td>Channa macrocheilos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Chamidae</td>
<td>Payuh (S)</td>
<td>Channa macrocheilos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Chamidae</td>
<td>Payuh (S)</td>
<td>Channa macrocheilos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Chamidae</td>
<td>Payuh (S)</td>
<td>Channa macrocheilos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Masoumbeidae</td>
<td>Tuap (M, R, S)</td>
<td>Colossomo macrophorum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Masoumbeidae</td>
<td>Tuap (M, R, S)</td>
<td>Colossomo macrophorum</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Keterangan:
- M = Memban, R = Ranau Kiri, S = Simbangpo, - = tidak ditemukan
- T = Than Kebun, H = Than Hiu, K = Than Kebun dan Taman Bawal